我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:六合报码室 > 多项式时间 >

世界上还未解开的数数学难题有哪些

归档日期:06-27       文本归类:多项式时间      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  2017-02-01展开全部P与NP问题 P 问题的P 是Polynomial Time(多项式时间)的头一个字母.某决定性(非概率)算法计算一个问题所花的时间t是问题尺度n的多项式函数t=P(n),我们就称之为“多项式时间决定法”.而能用这个算法解的问题就是P 问题;反之,就叫做“非多项式时间决定性算法”,这类的问题就是“NP 问题”,NP 是Non deterministic Polynomial time (非决定性多项式时间)的缩写.由定义来说,P 问题是NP 问题的一部份.但是否NP 问题里面有些不属于P 问题等级的东西呢?或者NP 问题终究也成为P 问题?这就是相当著名的PNP 问题.一般认为,NP 问题里面有不属于P 问题等级的东西.

  黎曼假设 Zeta 函数ζ (s)(s属于C)的全部非平凡零点都在复平面的直线上.

  杨-米尔理论 杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们碰到的困难是这个粒子的质量的问题.他们从数学上所推导的结果是,这个粒子具有电荷但没有质量.然而,困难的是如果这一有电荷的粒子是没有质量的,那麼为什麼没有任何实验证据呢?而如果假定该粒子有质量,规范对称性就会被破坏.一般物理学家是相信有质量,因此如何填补这个漏洞就是相当具挑战性的数学问题.

  波奇和斯温纳顿-戴雅猜想 y^2=x^3+ax+b的有理数解问题.在计算椭圆之弧长时就会遇见这种曲线 年代以来,数学家便发现椭圆曲线与数论、几何、密码学等有著密切的关系.例如:怀尔斯(Wiles)证明费马大定理,其中一个关键步骤就是用到椭圆曲线与模形式(modularform)之关系——即谷山-志村猜想.典型的数学方法是同余(congruence)这个观念并藉此得同余类(congruence class)即被一个数除之后的余数.数学家自然的选择了质数,所以这个问题与黎曼猜想之Zeta 函数有关.经由长时间大量的计算与资料收集,波奇等人观察出一些规律与模式,因而提出这个猜测.他们从电脑计算之结果断言:椭圆曲线会有无穷多个有理点,若且唯若附於曲线上面的

本文链接:http://barstaffuk.com/duoxiangshishijian/734.html